Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 84: 101941, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636794

RESUMO

OBJECTIVE: Low-density lipoprotein receptor-related protein-1 (LRP1) regulates energy homeostasis, blood-brain barrier integrity, and metabolic signaling in the brain. Deficiency of LRP1 in inhibitory gamma-aminobutyric acid (GABA)ergic neurons causes severe obesity in mice. However, the impact of LRP1 in inhibitory neurons on memory function and cognition in the context of obesity is poorly understood. METHODS: Mice lacking LRP1 in GABAergic neurons (Vgat-Cre; LRP1loxP/loxP) underwent behavioral tests for locomotor activity and motor coordination, short/long-term and spatial memory, and fear learning/memory. This study evaluated the relationships between behavior and metabolic risk factors and followed the mice at 16 and 32 weeks of age. RESULTS: Deletion of LRP1 in GABAergic neurons caused a significant impairment in memory function in 32-week-old mice. In the spatial Y-maze test, Vgat-Cre; LRP1loxP/loxP mice exhibited decreased travel distance and duration in the novel arm compared with controls (LRP1loxP/loxP mice). In addition, GABAergic neuron-specific LRP1-deficient mice showed a diminished capacity for performing learning and memory tasks during the water T-maze test. Moreover, reduced freezing time was observed in these mice during the contextual and cued fear conditioning tests. These effects were accompanied by increased neuronal necrosis and satellitosis in the hippocampus. Importantly, the distance and duration in the novel arm, as well as the performance of the reversal water T-maze test, negatively correlated with metabolic risk parameters, including body weight, serum leptin, insulin, and apolipoprotein J. However, in 16-week-old Vgat-Cre; LRP1loxP/loxP mice, there were no differences in the behavioral tests or correlations between metabolic parameters and cognition. CONCLUSIONS: Our findings demonstrate that LRP1 from GABAergic neurons is important in regulating normal learning and memory. Metabolically, obesity caused by GABAergic LRP1 deletion negatively regulates memory and cognitive function in an age-dependent manner. Thus, LRP1 in GABAergic neurons may play a crucial role in maintaining normal excitatory/inhibitory balance, impacting memory function, and reinforcing the potential importance of LRP1 in neural system integrity.

2.
Am J Transplant ; 24(3): 391-405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37913871

RESUMO

In clinical organ transplantation, donor and recipient ages may differ substantially. Old donor organs accumulate senescent cells that have the capacity to induce senescence in naïve cells. We hypothesized that the engraftment of old organs may induce senescence in younger recipients, promoting age-related pathologies. When performing isogeneic cardiac transplants between age-mismatched C57BL/6 old donor (18 months) mice and young and middle-aged C57BL/6 (3- or 12- month-old) recipients , we observed augmented frequencies of senescent cells in draining lymph nodes, adipose tissue, livers, and hindlimb muscles 30 days after transplantation. These observations went along with compromised physical performance and impaired spatial learning and memory abilities. Systemic levels of the senescence-associated secretory phenotype factors, including mitochondrial DNA (mt-DNA), were elevated in recipients. Of mechanistic relevance, injections of mt-DNA phenocopied effects of age-mismatched organ transplantation on accelerating aging. Single treatment of old donor animals with senolytics prior to transplantation attenuated mt-DNA release and improved physical capacities in young recipients. Collectively, we show that transplanting older organs induces senescence in transplant recipients, resulting in compromised physical and cognitive capacities. Depleting senescent cells with senolytics, in turn, represents a promising approach to improve outcomes of older organs.


Assuntos
Senescência Celular , Transplante de Órgãos , Animais , Camundongos , Senoterapia , Camundongos Endogâmicos C57BL , Transplante de Órgãos/efeitos adversos , DNA/farmacologia , Envelhecimento/fisiologia
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835027

RESUMO

Whole-body exposure to high-energy particle radiation remains an unmitigated hazard to human health in space. Ongoing experiments at the NASA Space Radiation Laboratory and elsewhere repeatedly show persistent changes in brain function long after exposure to simulations of this unique radiation environment, although, as is also the case with proton radiotherapy sequelae, how this occurs and especially how it interacts with common comorbidities is not well-understood. Here, we report modest differential changes in behavior and brain pathology between male and female Alzheimer's-like and wildtype littermate mice 7-8 months after exposure to 0, 0.5, or 2 Gy of 1 GeV proton radiation. The mice were examined with a battery of behavior tests and assayed for amyloid beta pathology, synaptic markers, microbleeds, microglial reactivity, and plasma cytokines. In general, the Alzheimer's model mice were more prone than their wildtype littermates to radiation-induced behavior changes, and hippocampal staining for amyloid beta pathology and microglial activation in these mice revealed a dose-dependent reduction in males but not in females. In summary, radiation-induced, long-term changes in behavior and pathology, although modest, appear specific to both sex and the underlying disease state.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Feminino , Humanos , Animais , Doença de Alzheimer/patologia , Prótons , Peptídeos beta-Amiloides/metabolismo , Relação Dose-Resposta à Radiação , Hipocampo/metabolismo , Mutação , Camundongos Transgênicos
4.
Sci Rep ; 12(1): 4922, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318369

RESUMO

Our recent studies uncovered a novel GABA signaling pathway in embryonic forebrain endothelial cells that works independently from neuronal GABA signaling and revealed that disruptions in endothelial GABAA receptor-GABA signaling from early embryonic stages can directly contribute to the origin of psychiatric disorders. In the GABAA receptor ß3 subunit endothelial cell conditional knockout (Gabrb3ECKO) mice, the ß3 subunit is deleted selectively from endothelial cells, therefore endothelial GABAA receptors become inactivated and dysfunctional. There is a reduction in vessel densities and increased vessel morphology in the Gabrb3ECKO telencephalon that persists in the adult neocortex. Gabrb3ECKO mice show behavioral deficits such as impaired reciprocal social interactions, communication deficits, heightened anxiety, and depression. Here, we characterize the functional changes in Gabrb3ECKO mice by evaluating cortical blood flow, examine the consequences of loss of endothelial Gabrb3 on cardiac tissue, and define more in-depth altered behaviors. Red blood cell velocity and blood flow were increased in the cortical microcirculation of the Gabrb3ECKO mice. The Gabrb3ECKO mice had a reduction in vessel densities in the heart, similar to the brain; exhibited wavy, myocardial fibers, with elongated 'worm-like' nuclei in their cardiac histology, and developed hypertension. Additional alterations in behavioral function were observed in the Gabrb3ECKO mice such as increased spontaneous exploratory activity and rearing in an open field, reduced short term memory, decreased ambulatory activity in CLAMS testing, and altered prepulse inhibition to startle, an important biomarker of psychiatric diseases such as schizophrenia. Our results imply that vascular Gabrb3 is a key player in the brain as well as the heart, and its loss in both organs can lead to concurrent development of psychiatric and cardiac dysfunction.


Assuntos
Hipertensão , Receptores de GABA-A , Animais , Células Endoteliais/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Camundongos , Camundongos Knockout , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Immunity ; 55(1): 159-173.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34982959

RESUMO

To accommodate the changing needs of the developing brain, microglia must undergo substantial morphological, phenotypic, and functional reprogramming. Here, we examined whether cellular metabolism regulates microglial function during neurodevelopment. Microglial mitochondria bioenergetics correlated with and were functionally coupled to phagocytic activity in the developing brain. Transcriptional profiling of microglia with diverse metabolic profiles revealed an activation signature wherein the interleukin (IL)-33 signaling axis is associated with phagocytic activity. Genetic perturbation of IL-33 or its receptor ST2 led to microglial dystrophy, impaired synaptic function, and behavioral abnormalities. Conditional deletion of Il33 from astrocytes or Il1rl1, encoding ST2, in microglia increased susceptibility to seizures. Mechanistically, IL-33 promoted mitochondrial activity and phagocytosis in an AKT-dependent manner. Mitochondrial metabolism and AKT activity were temporally regulated in vivo. Thus, a microglia-astrocyte circuit mediated by the IL-33-ST2-AKT signaling axis supports microglial metabolic adaptation and phagocytic function during early development, with implications for neurodevelopmental and neuropsychiatric disorders.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Convulsões/imunologia , Animais , Comportamento Animal , Suscetibilidade a Doenças , Sinapses Elétricas/metabolismo , Metabolismo Energético , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Camundongos , Camundongos Knockout , Microglia/patologia , Neurogênese/genética , Proteína Oncogênica v-akt/metabolismo , Fagocitose , Transdução de Sinais
6.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948098

RESUMO

Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aß) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aß and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.


Assuntos
Doença de Alzheimer , Comportamento Animal/efeitos da radiação , Raios gama , Genótipo , Radioisótopos de Ferro , Presenilina-1 , Caracteres Sexuais , Memória Espacial/efeitos da radiação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Fatores de Tempo
8.
Nat Metab ; 3(8): 1058-1070, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417591

RESUMO

Identifying secreted mediators that drive the cognitive benefits of exercise holds great promise for the treatment of cognitive decline in ageing or Alzheimer's disease (AD). Here, we show that irisin, the cleaved and circulating form of the exercise-induced membrane protein FNDC5, is sufficient to confer the benefits of exercise on cognitive function. Genetic deletion of Fndc5/irisin (global Fndc5 knock-out (KO) mice; F5KO) impairs cognitive function in exercise, ageing and AD. Diminished pattern separation in F5KO mice can be rescued by delivering irisin directly into the dentate gyrus, suggesting that irisin is the active moiety. In F5KO mice, adult-born neurons in the dentate gyrus are morphologically, transcriptionally and functionally abnormal. Importantly, elevation of circulating irisin levels by peripheral delivery of irisin via adeno-associated viral overexpression in the liver results in enrichment of central irisin and is sufficient to improve both the cognitive deficit and neuropathology in AD mouse models. Irisin is a crucial regulator of the cognitive benefits of exercise and is a potential therapeutic agent for treating cognitive disorders including AD.


Assuntos
Cognição , Fibronectinas/metabolismo , Hormônios/metabolismo , Condicionamento Físico Animal , Animais , Comportamento Animal , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Modelos Animais de Doenças , Fibronectinas/genética , Deleção de Genes , Expressão Gênica , Camundongos , Camundongos Knockout , Fenótipo
9.
J Control Release ; 336: 443-456, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34186148

RESUMO

Pyroglutamate-3 amyloid-ß (pGlu3 Aß) is an N-terminally modified, pathogenic form of amyloid-ß that is present in cerebral amyloid plaques and vascular deposits. Here, we used focused ultrasound (FUS) with microbubbles to enhance the intravenous delivery of an Fc-competent anti-pGlu3 Aß monoclonal antibody, 07/2a mAb, across the blood brain barrier (BBB) in an attempt to improve Aß removal and memory in aged APP/PS1dE9 mice, an Alzheimer's disease (AD)-like model of amyloidogenesis. First, we demonstrated that bilateral hippocampal FUS-BBB disruption (FUS-BBBD) led to a 5.5-fold increase of 07/2a mAb delivery to the brains compared to non-sonicated mice 72 h following a single treatment. Then, we determined that three weekly treatments with 07/2a mAb alone improved spatial learning and memory in aged, plaque-rich APP/PS1dE9 mice, and that this improvement occurred faster and in a higher percentage of animals when combined with FUS-BBBD. Mice given the combination treatment had reduced hippocampal plaque burden compared to PBS-treated controls. Furthermore, synaptic protein levels were higher in hippocampal synaptosomes from mice given the combination treatment compared to sham controls, and there were more CA3 synaptic puncta labeled in the APP/PS1dE9 mice given the combination treatment compared to those given mAb alone. Plaque-associated microglia were present in the hippocampi of APP/PS1dE9 mice treated with 07/2a mAb with and without FUS-BBBD. However, we discovered that plaque-associated Ly6G+ monocytes were only present in the hippocampi of APP/PS1dE9 mice that were given FUS-BBBD alone or even more so, the combination treatment. Lastly, FUS-BBBD did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment. Our findings suggest that FUS is a useful tool to enhance delivery and efficacy of an anti-pGlu3 Aß mAb for immunotherapy either via an additive effect or an independent mechanism. We revealed a potential novel mechanism wherein the combination of 07/2a mAb with FUS-BBBD led to greater monocyte infiltration and recruitment to plaques in this AD-like model. Overall, these effects resulted in greater plaque removal, sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS-BBBD as a noninvasive method to increase the therapeutic efficacy of drugs or biologics in AD patients.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Placa Amiloide , Ácido Pirrolidonocarboxílico
10.
Sci Transl Med ; 13(596)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078745

RESUMO

Compelling evidence supports vascular contributions to cognitive impairment and dementia (VCID) including Alzheimer's disease (AD), but the underlying pathogenic mechanisms and treatments are not fully understood. Cis P-tau is an early driver of neurodegeneration resulting from traumatic brain injury, but its role in VCID remains unclear. Here, we found robust cis P-tau despite no tau tangles in patients with VCID and in mice modeling key aspects of clinical VCID, likely because of the inhibition of its isomerase Pin1 by DAPK1. Elimination of cis P-tau in VCID mice using cis-targeted immunotherapy, brain-specific Pin1 overexpression, or DAPK1 knockout effectively rescues VCID-like neurodegeneration and cognitive impairment in executive function. Cis mAb also prevents and ameliorates progression of AD-like neurodegeneration and memory loss in mice. Furthermore, single-cell RNA sequencing revealed that young VCID mice display diverse cortical cell type-specific transcriptomic changes resembling old patients with AD, and the vast majority of these global changes were recovered by cis-targeted immunotherapy. Moreover, purified soluble cis P-tau was sufficient to induce progressive neurodegeneration and brain dysfunction by causing axonopathy and conserved transcriptomic signature found in VCID mice and patients with AD with early pathology. Thus, cis P-tau might play a major role in mediating VCID and AD, and antibody targeting it may be useful for early diagnosis, prevention, and treatment of cognitive impairment and dementia after neurovascular insults and in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Doença de Alzheimer/complicações , Doença de Alzheimer/terapia , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/terapia , Demência Vascular/terapia , Humanos , Imunoterapia , Camundongos , Peptidilprolil Isomerase de Interação com NIMA , Proteínas tau/metabolismo
11.
Alzheimers Res Ther ; 12(1): 12, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931873

RESUMO

BACKGROUND: Pyroglutamate-3 Aß (pGlu-3 Aß) is an N-terminally truncated and post-translationally modified Aß species found in Alzheimer's disease (AD) brain. Its increased peptide aggregation propensity and toxicity make it an attractive emerging treatment strategy for AD. We address the question of how the effector function of an anti-pGlu-3 Aß antibody influences the efficacy of immunotherapy in mouse models with AD-like pathology. METHODS: We compared two different immunoglobulin (Ig) isotypes of the same murine anti-pGlu-3 Aß mAb (07/1 IgG1 and 07/2a IgG2a) and a general N-terminal Aß mAb (3A1 IgG1) for their ability to clear Aß and protect cognition in a therapeutic passive immunotherapy study in aged, plaque-rich APPSWE/PS1ΔE9 transgenic (Tg) mice. We also compared the ability of these antibodies and a CDC-mutant form of 07/2a (07/2a-k), engineered to avoid complement activation, to clear Aß in an ex vivo phagocytosis assay and following treatment in APPSLxhQC double Tg mice, and to activate microglia using longitudinal microPET imaging with TSPO-specific 18F-GE180 tracer following a single bolus antibody injection in young and old Tg mice. RESULTS: We demonstrated significant cognitive improvement, better plaque clearance, and more plaque-associated microglia in the absence of microhemorrhage in aged APPSWE/PS1ΔE9 Tg mice treated with 07/2a, but not 07/1 or 3A1, compared to PBS in our first in vivo study. All mAbs cleared plaques in an ex vivo assay, although 07/2a promoted the highest phagocytic activity. Compared with 07/2a, 07/2a-k showed slightly reduced affinity to Fcγ receptors CD32 and CD64, although the two antibodies had similar binding affinities to pGlu-3 Aß. Treatment of APPSLxhQC mice with 07/2a and 07/2a-k mAbs in our second in vivo study showed significant plaque-lowering with both mAbs. Longitudinal 18F-GE180 microPET imaging revealed different temporal patterns of microglial activation for 3A1, 07/1, and 07/2a mAbs and no difference between 07/2a-k and PBS-treated Tg mice. CONCLUSION: Our results suggest that attenuation of behavioral deficits and clearance of amyloid is associated with strong effector function of the anti-pGlu-3 Aß mAb in a therapeutic treatment paradigm. We present evidence that antibody engineering to reduce CDC-mediated complement binding facilitates phagocytosis of plaques without inducing neuroinflammation in vivo. Hence, the results provide implications for tailoring effector function of humanized antibodies for clinical development.


Assuntos
Doença de Alzheimer , Vacinas contra Alzheimer/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Neuroglia/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Imunização Passiva/métodos , Imunoglobulina G , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Ácido Pirrolidonocarboxílico/metabolismo
12.
Transl Psychiatry ; 9(1): 336, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819040

RESUMO

Pharmaceutical breakthroughs for anxiety have been lackluster in the last half-century. Converging behavior and limbic molecular heterogeneity has the potential to revolutionize biomarker-driven interventions. However, current in vivo models too often deploy artificial systems including directed evolution, mutations and fear induction, which poorly mirror clinical manifestations. Here, we explore transcriptional heterogeneity of the amygdala in isogenic mice using an unbiased multi-dimensional computational approach that segregates intra-cohort reactions to moderate situational adversity and intersects it with high content molecular profiling. We show that while the computational approach stratifies known features of clinical anxiety including nitric oxide, opioid and corticotropin signaling, previously unrecognized druggable biomarkers emerge, such as calpain11 and scand1. Through ingenuity pathway analyses, we further describe a role for neurosteroid estradiol signaling, heat shock proteins, ubiquitin ligases and lipid metabolism. In addition, we report a remarkable behavioral pattern that maps to molecular features of anxiety in mice through counterphobic social attitudes, which manifest as increased, yet spatially distant socialization. These findings provide an unbiased approach for interrogating anxiolytics, and hint toward biomarkers underpinning behavioral and social patterns that merit further exploration.


Assuntos
Tonsila do Cerebelo , Ansiedade , Comportamento Animal , Modelos Biológicos , Neurociências/métodos , Comportamento Social , Socialização , Transcrição Gênica , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/genética , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
13.
Sci Rep ; 9(1): 12118, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431669

RESUMO

Space travel will expose people to high-energy, heavy particle radiation, and the cognitive deficits induced by this exposure are not well understood. To investigate the short-term effects of space radiation, we irradiated 4-month-old Alzheimer's disease (AD)-like transgenic (Tg) mice and wildtype (WT) littermates with a single, whole-body dose of 10 or 50 cGy 56Fe ions (1 GeV/u) at Brookhaven National Laboratory. At ~1.5 months post irradiation, behavioural testing showed sex-, genotype-, and dose-dependent changes in locomotor activity, contextual fear conditioning, grip strength, and motor learning, mainly in Tg but not WT mice. There was little change in general health, depression, or anxiety. Two months post irradiation, microPET imaging of the stable binding of a translocator protein ligand suggested no radiation-specific change in neuroinflammation, although initial uptake was reduced in female mice independently of cerebral blood flow. Biochemical and immunohistochemical analyses revealed that radiation reduced cerebral amyloid-ß levels and microglia activation in female Tg mice, modestly increased microhemorrhages in 50 cGy irradiated male WT mice, and did not affect synaptic marker levels compared to sham controls. Taken together, we show specific short-term changes in neuropathology and behaviour induced by 56Fe irradiation, possibly having implications for long-term space travel.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Encéfalo/efeitos da radiação , Radioisótopos de Ferro/efeitos adversos , Voo Espacial , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal/efeitos da radiação , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Feminino , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Aprendizagem/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Microglia/efeitos da radiação , Atividade Motora/efeitos da radiação , Presenilina-1/genética , Presenilina-1/metabolismo , Fatores Sexuais
14.
Sci Rep ; 9(1): 8646, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201348

RESUMO

Brain degeneration, including that caused by traumatic brain injury (TBI) often leads to severe bladder dysfunction, including incontinence and lower urinary tract symptoms; with the causes remaining unknown. Male C57BL/6J mice underwent repetitive moderate brain injury (rmdTBI) or sham injury, then mice received either cis P-tau monoclonal antibody (cis mAb), which prevents brain degeneration in TBI mice, or control (IgG). Void spot assays revealed age-dependent incontinence in IgG controls 8 months after injury, while cis mAb treated or sham mice showed no dysfunction. No obvious bladder pathology occurred in any group. Urodynamic cystometry in conscious mice revealed overactive bladder, reduced maximal voiding pressures and incontinence in IgG control, but not sham or cis mAb treated mice. Hyperphosphorylated tau deposition and neural tangle-like pathology occurred in cortical and hippocampal regions only of IgG control mice accompanied with post-traumatic neuroinflammation and was not seen in midbrain and hindbrain regions associated with bladder filling and voiding reflex arcs. In this model of brain degeneration bladder dysfunction results from rostral, and not hindbrain damage, indicating that rostral brain inputs are required for normal bladder functioning. Detailed analysis of the functioning of neural circuits controlling bladder function in TBI should lead to insights into how brain degeneration leads to bladder dysfunction, as well as novel strategies to treat these disorders.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/patologia , Reflexo/fisiologia , Micção/fisiologia , Proteínas tau/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Temperatura , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/fisiopatologia
15.
Neuron ; 100(1): 75-90.e5, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308173

RESUMO

α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in Parkinson's disease (PD). Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutations shift tetramers to aggregation-prone monomers. Here, we generated mice expressing the fPD E46K mutation plus 2 homologous E→K mutations in adjacent KTKEGV motifs. This tetramer-abrogating mutant causes phenotypes similar to PD. αS monomers accumulate at membranes and form vesicle-rich inclusions. αS becomes insoluble, proteinase K-resistant, Ser129-phosphorylated, and C-terminally truncated, as in PD. These changes affect regions controlling motor behavior, including a decrease in nigrostriatal dopaminergic neurons. The outcome is a progressive motor syndrome including tremor and gait and limb deficits partially responsive to L-DOPA. This fully penetrant phenotype indicates that tetramers are required for normal αS homeostasis and that chronically shifting tetramers to monomers may result in PD, with attendant therapeutic implications.


Assuntos
Transtornos Parkinsonianos/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética , Animais , Antiparkinsonianos/farmacologia , Encéfalo/patologia , Modelos Animais de Doenças , Levodopa/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Conformação Proteica
16.
Science ; 357(6354): 891-898, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860381

RESUMO

Copy number mutations implicate excess production of α-synuclein as a possibly causative factor in Parkinson's disease (PD). Using an unbiased screen targeting endogenous gene expression, we discovered that the ß2-adrenoreceptor (ß2AR) is a regulator of the α-synuclein gene (SNCA). ß2AR ligands modulate SNCA transcription through histone 3 lysine 27 acetylation of its promoter and enhancers. Over 11 years of follow-up in 4 million Norwegians, the ß2AR agonist salbutamol, a brain-penetrant asthma medication, was associated with reduced risk of developing PD (rate ratio, 0.66; 95% confidence interval, 0.58 to 0.76). Conversely, a ß2AR antagonist correlated with increased risk. ß2AR activation protected model mice and patient-derived cells. Thus, ß2AR is linked to transcription of α-synuclein and risk of PD in a ligand-specific fashion and constitutes a potential target for therapies.


Assuntos
Regulação da Expressão Gênica , Doença de Parkinson/etnologia , Doença de Parkinson/genética , Receptores Adrenérgicos beta 2/metabolismo , alfa-Sinucleína/genética , Acetilação , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Albuterol/farmacologia , Albuterol/uso terapêutico , Animais , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Ligantes , Camundongos , Fármacos Neuroprotetores/farmacologia , Noruega/etnologia , Doença de Parkinson/tratamento farmacológico , Regiões Promotoras Genéticas , Propranolol/farmacologia , Propranolol/uso terapêutico , Receptores Adrenérgicos beta 2/genética , Risco , Substância Negra/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
Immunology ; 152(4): 589-601, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28742222

RESUMO

Seizures are due to excessive, synchronous neuronal firing in the brain and are characteristic of epilepsy, the fourth most prevalent neurological disease. We report handling-induced and spontaneous seizures in mice deficient for CD39, a cell-surface ATPase highly expressed on microglial cells. CD39-/- mice with handling-induced seizures had normal input-output curves and paired-pulse ratio measured from hippocampal slices and lacked microgliosis, astrogliosis or overt cell loss in the hippocampus and cortex. As expected, however, the cerebrospinal fluid of CD39-/- mice contained increased levels of ATP and decreased levels of adenosine. To determine if immune activation was involved in seizure progression, we challenged mice with lipopolysaccharide (LPS) and measured the effect on microglia activation and seizure severity. Systemic LPS challenge resulted in increased cortical staining of Iba1/CD68 and gene array data from purified microglia predicted increased expression of interleukin-8, triggering receptor expressed on myeloid cells 1, p38, pattern recognition receptors, death receptor, nuclear factor-κB , complement, acute phase, and interleukin-6 signalling pathways in CD39-/- versus CD39+/+ mice. However, LPS treatment did not affect handling-induced seizures. In addition, microglia-specific CD39 deletion in adult mice was not sufficient to cause seizures, suggesting instead that altered expression of CD39 during development or on non-microglial cells such as vascular endothelial cells may promote the seizure phenotype. In summary, we show a correlation between altered extracellular ATP/adenosine ratio and a previously unreported seizure phenotype in CD39-/- mice. This work provides groundwork for further elucidation of the underlying mechanisms of epilepsy.


Assuntos
Trifosfato de Adenosina/imunologia , Adenosina/imunologia , Apirase/deficiência , Córtex Cerebral/imunologia , Hipocampo/imunologia , Convulsões/imunologia , Adenosina/genética , Trifosfato de Adenosina/genética , Animais , Antígenos CD/imunologia , Apirase/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Córtex Cerebral/patologia , Hipocampo/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Convulsões/genética , Convulsões/patologia
18.
Sci Transl Med ; 9(392)2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566429

RESUMO

The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aß by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aß-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1;C3 KO). We examined the effects of C3 deficiency on cognition, Aß plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1;C3 KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aß plaques. Aged APP/PS1;C3 KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aß plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1;C3 KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aß plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice.


Assuntos
Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Complemento C3/deficiência , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Placa Amiloide/patologia , Presenilina-1/metabolismo , Animais , Astrócitos/patologia , Disfunção Cognitiva , Citocinas/metabolismo , Gliose/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Amiloide/metabolismo , Solubilidade , Sinapses/metabolismo , Sinapses/patologia
19.
J Med Chem ; 60(14): 6273-6288, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28657744

RESUMO

A series of N-substituted (2-phenylcyclopropyl)methylamines were designed and synthesized, with the aim of finding serotonin 2C (5-HT2C)-selective agonists with a preference for Gq signaling. A number of these compounds exhibit 5-HT2C selectivity with a preference for Gq-mediated signaling compared with ß-arrestin recruitment. Furthermore, the N-methyl compound (+)-15a, which displayed an EC50 of 23 nM in the calcium flux assay while showing no ß-arrestin recruitment activity, is the most functionally selective 5-HT2C agonist reported to date. The N-benzyl compound (+)-19, which showed an EC50 of 24 nM at the 5-HT2C receptor, is fully selective over the 5-HT2B receptor. In an amphetamine-induced hyperactivity model, compound (+)-19 showed significant antipsychotic-drug-like activity. These novel compounds shed light on the role of functional selectivity at the 5-HT2C receptor with respect to antipsychotic activity.


Assuntos
Antipsicóticos/química , Benzilaminas/química , Ciclopropanos/química , Metilaminas/química , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/química , Animais , Antipsicóticos/síntese química , Antipsicóticos/farmacologia , Benzilaminas/síntese química , Benzilaminas/farmacologia , Ciclopropanos/síntese química , Ciclopropanos/farmacologia , Células HEK293 , Humanos , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Masculino , Metilaminas/síntese química , Metilaminas/farmacologia , Camundongos Endogâmicos C57BL , Receptor 5-HT2B de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , beta-Arrestinas/metabolismo
20.
Nat Chem Biol ; 12(7): 559-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239787

RESUMO

Many psychiatric drugs act on multiple targets and therefore require screening assays that encompass a wide target space. With sufficiently rich phenotyping and a large sampling of compounds, it should be possible to identify compounds with desired mechanisms of action on the basis of behavioral profiles alone. Although zebrafish (Danio rerio) behavior has been used to rapidly identify neuroactive compounds, it is not clear what types of behavioral assays would be necessary to identify multitarget compounds such as antipsychotics. Here we developed a battery of behavioral assays in larval zebrafish to determine whether behavioral profiles can provide sufficient phenotypic resolution to identify and classify psychiatric drugs. Using the antipsychotic drug haloperidol as a test case, we found that behavioral profiles of haloperidol-treated zebrafish could be used to identify previously uncharacterized compounds with desired antipsychotic-like activities and multitarget mechanisms of action.


Assuntos
Antipsicóticos/análise , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Peixe-Zebra , Animais , Antipsicóticos/química , Larva/efeitos dos fármacos , Camundongos , Estrutura Molecular , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...